login
A006241
Number of minimal plane trees with n terminal nodes.
(Formerly M0133)
11
1, 1, 1, 2, 1, 3, 1, 6, 2, 3, 1, 20, 1, 3, 3, 54, 1, 34, 1, 44, 3, 3, 1, 764, 2, 3, 10, 140, 1, 283, 1, 4470, 3, 3, 3, 10416, 1, 3, 3, 10820, 1, 2227, 1, 2060, 62, 3, 1, 958476, 2, 250, 3, 8204, 1, 59154, 3, 316004, 3, 3, 1, 3457904, 1, 3, 158, 30229110, 3
OFFSET
1,4
COMMENTS
In equation (4.4) Lew says a(p^3) = 3+3^p, but this is incorrect, it should be a(p^3) = 2+2^p. - Sean A. Irvine, Feb 07 2017
From Gus Wiseman, Jan 15 2017: (Start)
Number of same-trees of weight n with all leaves equal to 1. A same-tree is either: (case 1) a positive integer, or (case 2) a finite sequence of two or more same-trees all having the same weight, where the weight in case 2 is the sum of weights.
For n>1, a(n) is also equal to the number of same-trees of weight n with all leaves greater than 1 (see example). (End)
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(1)=a(2)=a(3)=a(5)=a(7)=1, a(4)=2, a(6)=3, a(n) = Sum_{1 != d | n} a(n / d)^d [From Lew]. - Sean A. Irvine, Feb 07 2017 [typo corrected by Ilya Gutkovskiy, Apr 24 2019]
EXAMPLE
The a(12)=20 same-trees with all leaves greater than 1 are:
12, (3333), (222222), ((33)(33)), ((33)(222)), ((33)6), ((222)(33)), ((222)(222)), ((222)6), (6(33)), (6(222)), (66), ((22)(22)(22)), ((22)(22)4), ((22)4(22)), ((22)44), (4(22)(22)), (4(22)4), (44(22)), (444). - Gus Wiseman, Jan 15 2017
MAPLE
a:= proc(n) option remember; `if`(n=1, 1, add(
a(n/d)^d, d=numtheory[divisors](n) minus {1}))
end:
seq(a(n), n=1..70); # Alois P. Heinz, Feb 21 2017
MATHEMATICA
Array[If[#1===1, 1, Sum[#0[#1/d]^d, {d, Rest[Divisors[#1]]}]]&, 200] (* Gus Wiseman, Jan 15 2017 *)
CROSSREFS
Sequence in context: A140352 A277130 A082588 * A336105 A282601 A363273
KEYWORD
nonn
EXTENSIONS
a(8), a(27), and a(50) corrected by Sean A. Irvine, Feb 07 2017
STATUS
approved