OFFSET
1,4
COMMENTS
In equation (4.4) Lew says a(p^3) = 3+3^p, but this is incorrect, it should be a(p^3) = 2+2^p. - Sean A. Irvine, Feb 07 2017
From Gus Wiseman, Jan 15 2017: (Start)
Number of same-trees of weight n with all leaves equal to 1. A same-tree is either: (case 1) a positive integer, or (case 2) a finite sequence of two or more same-trees all having the same weight, where the weight in case 2 is the sum of weights.
For n>1, a(n) is also equal to the number of same-trees of weight n with all leaves greater than 1 (see example). (End)
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
J. S. Lew, Polynomial enumeration of multidimensional lattices, Math. Systems Theory, 12 (1978), 253-270.
Gus Wiseman, Same trees with all leaves equal to one n=1..15
FORMULA
a(1)=a(2)=a(3)=a(5)=a(7)=1, a(4)=2, a(6)=3, a(n) = Sum_{1 != d | n} a(n / d)^d [From Lew]. - Sean A. Irvine, Feb 07 2017 [typo corrected by Ilya Gutkovskiy, Apr 24 2019]
EXAMPLE
The a(12)=20 same-trees with all leaves greater than 1 are:
12, (3333), (222222), ((33)(33)), ((33)(222)), ((33)6), ((222)(33)), ((222)(222)), ((222)6), (6(33)), (6(222)), (66), ((22)(22)(22)), ((22)(22)4), ((22)4(22)), ((22)44), (4(22)(22)), (4(22)4), (44(22)), (444). - Gus Wiseman, Jan 15 2017
MAPLE
a:= proc(n) option remember; `if`(n=1, 1, add(
a(n/d)^d, d=numtheory[divisors](n) minus {1}))
end:
seq(a(n), n=1..70); # Alois P. Heinz, Feb 21 2017
MATHEMATICA
Array[If[#1===1, 1, Sum[#0[#1/d]^d, {d, Rest[Divisors[#1]]}]]&, 200] (* Gus Wiseman, Jan 15 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(8), a(27), and a(50) corrected by Sean A. Irvine, Feb 07 2017
STATUS
approved