login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006240 Row 4 of array in A212801.
(Formerly M5271)
3
1, 40, 793, 12800, 193721, 2886520, 42999713, 642355200, 9617422321, 144167168200, 2162192792233, 32433400563200, 486521516676521, 7298047169453080, 109472483776866353, 1642098503032012800, 24631532723767204321, 369473147671033293160, 5542096617629211606073, 83131435057615545920000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Number of Eulerian circuits in the Cartesian product of two directed cycles of lengths 4 and n. - Andrew Howroyd, Jan 14 2018

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..200

Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212.

Eric Weisstein's World of Mathematics, Checkers.

FORMULA

Empirical g.f.: x*(1-167*x^2+1200*x^3-2505*x^4+3375*x^6)/((1-x)*(1-3*x)*(1-5*x)*(1-15*x)*(1-4*x+5*x^2)*(1-12*x+45*x^2)). - Bruno Berselli, May 31 2012

Empirical closed form: a(n) = (15^n+3^n-5^n-1+(2+i)^n+(2-i)^n -(6+3*i)^n -(6-3*i)^n)/4, where i=sqrt(-1). - Bruno Berselli, May 31 2012

MATHEMATICA

T[m_, n_] := Product[2 - Exp[2*I*h*Pi/m] - Exp[2*I*k*Pi/n], {h, 1, m - 1}, {k, 1, n - 1}];

a[n_] := T[4, n] // Round;

Array[a, 20] (* Jean-François Alcover, Jul 04 2018 *)

CROSSREFS

Cf. A212801.

Sequence in context: A022073 A261571 A010956 * A126928 A035715 A035609

Adjacent sequences:  A006237 A006238 A006239 * A006241 A006242 A006243

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

Revised by N. J. A. Sloane, May 27 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 18:08 EST 2021. Contains 349526 sequences. (Running on oeis4.)