login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006239 Row 3 of array in A212801.
(Formerly M4909)
2
1, 13, 108, 793, 5611, 39312, 274933, 1923025, 13455396, 94169413, 659134543, 4613813568, 32296413241, 226074381637, 1582520088348, 11077641280225, 77543496352291, 542804506787088, 3799631657379853, 26597421924762793 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Number of Eulerian circuits in the Cartesian product of two directed cycles of lengths 3 and n. - Andrew Howroyd, Jan 14 2018

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..200

Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212. See p. 211.

Eric Weisstein's World of Mathematics, Checkers.

FORMULA

Empirical g.f.: x*(1-7*x^2)/((1-x)*(1-7*x)*(1-5*x+7*x^2)). - Bruno Berselli, May 31 2012

Empirical closed form: a(n) = (2^n*(1+7^n) -(5-i*sqrt(3))^n -(5+i*sqrt(3))^n) / (3*2^n), where i=sqrt(-1). - Bruno Berselli, May 31 2012

MATHEMATICA

T[m_, n_] := Product[2 - Exp[2*I*h*Pi/m] - Exp[2*I*k*Pi/n], {h, 1, m - 1}, {k, 1, n - 1}];

a[n_] := T[3, n] // Round;

Array[a, 20] (* Jean-François Alcover, Jul 04 2018 *)

CROSSREFS

Cf. A212801.

Sequence in context: A038384 A038385 A084901 * A271560 A142040 A002648

Adjacent sequences: A006236 A006237 A006238 * A006240 A006241 A006242

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

Revised by N. J. A. Sloane, May 27 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 17:38 EST 2022. Contains 358535 sequences. (Running on oeis4.)