login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212801
Square array read by antidiagonals: T(m,n) = number of Eulerian circuits in the Cartesian product of two directed cycles of lengths m and n.
7
1, 1, 1, 1, 4, 1, 1, 13, 13, 1, 1, 40, 108, 40, 1, 1, 121, 793, 793, 121, 1, 1, 364, 5611, 12800, 5611, 364, 1, 1, 1093, 39312, 193721, 193721, 39312, 1093, 1, 1, 3280, 274933, 2886520, 6050000, 2886520, 274933, 3280, 1, 1, 9841, 1923025, 42999713, 183990301, 183990301, 42999713, 1923025, 9841, 1
OFFSET
1,5
COMMENTS
All rows and columns are given by linear recurrences with constant coefficients. Empirically, the order of the recurrences for n=1..8 appear to be 1, 2, 4, 8, 16, 24, 64, 128. - Andrew Howroyd, May 19 2020
LINKS
Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212. See p. 211.
FORMULA
T(m,n) = Product_{k=1..n-1} Product_{h=1..m-1} (2 - exp(2*i*h*Pi/m) - exp(2*i*k*Pi/n)), where i is the imaginary unit.
EXAMPLE
Array begins:
======================================================================
m\n| 1 2 3 4 5 6 7
---|------------------------------------------------------------------
1 | 1 1 1 1 1 1 1 ...
2 | 1 4 13 40 121 364 1093 ...
3 | 1 13 108 793 5611 39312 274933 ...
4 | 1 40 793 12800 193721 2886520 42999713 ...
5 | 1 121 5611 193721 6050000 183990301 5598183221 ...
6 | 1 364 39312 2886520 183990301 11218701312 681838513861 ...
7 | 1 1093 274933 42999713 5598183221 681838513861 81959473720768 ...
...
MATHEMATICA
T[m_, n_] := Product[2 - Exp[2*I*h*Pi/m] - Exp[2*I*k*Pi/n], {h, 1, m - 1}, {k, 1, n - 1}];
Table[T[m - n + 1, n] // FullSimplify, {m, 1, 10}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jun 30 2018 *)
PROG
(PARI) T(m, n) = prod(k=1, n-1, prod(h=1, m-1, 2 - exp(2*I*h*Pi/m) - exp(2*I*k*Pi/n)));
tabl(nn) = matrix(nn, nn, m, n, round(real(T(m, n)))); \\ Michel Marcus, Feb 01 2016
(PARI) \\ all integer version.
R(n, f)={my(p=lift(prod(i=1, n-1, f(Mod(x^i, 1-x^n))))); sumdiv(n, d, moebius(n/d) * polcoef(p, d%n, x))}
T(m, n)={my(p=R(n, x->2-x-y)); R(m, x->subst(p, y, x))} \\ Andrew Howroyd, May 19 2020
CROSSREFS
Main diagonal is A212803.
Sequence in context: A146956 A152613 A157153 * A147565 A022167 A339849
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, May 27 2012
EXTENSIONS
Name clarified by Andrew Howroyd, Jan 12 2018
STATUS
approved