login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212802
Row 5 of array in A212801.
2
1, 121, 5611, 193721, 6050000, 183990301, 5598183221, 171567260161, 5290933752571, 163756656800000, 5076226921767101, 157423577321804321, 4881873153941565211, 151371085451034210421, 4692977668021522550000, 145487069742178319930401
OFFSET
1,2
COMMENTS
Number of Eulerian circuits in the Cartesian product of two directed cycles of lengths 5 and n. - Andrew Howroyd, Jan 12 2018
LINKS
Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212.
FORMULA
From Andrew Howroyd, Jan 12 2018: (Start)
Empirical: a(n) = 121*a(n-1) - 6520*a(n-2) + 209330*a(n-3) - 4493120*a(n-4) + 68446433*a(n-5) - 766303183*a(n-6) + 6438802040*a(n-7) - 41070618160*a(n-8) + 199602863240*a(n-9) - 736417358863*a(n-10) + 2039087685503*a(n-11) - 4149490675520*a(n-12) + 5992940178830*a(n-13) - 5786524000120*a(n-14) + 3329026307431*a(n-15) - 852891037441*a(n-16) for n > 16.
Empirical g.f.: x*(1 - 31*x^2)*(1 - 2479*x^2 + 94380*x^3 - 1719180*x^4 + 18597458*x^5 - 128373600*x^6 + 576521198*x^7 - 1652131980*x^8 + 2811674580*x^9 - 2289408559*x^10 + 887503681*x^12)/((1 - x)*(1 - 31*x)*(1 - 12*x + 31*x^2)*(1 - 9*x + 31*x^2 - 49*x^3 + 31*x^4)*(1 - 19*x + 151*x^2 - 589*x^3 + 961*x^4)*(1 - 49*x + 961*x^2 - 8649*x^3 + 29791*x^4)).
(End)
MATHEMATICA
T[m_, n_] := Product[2 - Exp[2*I*h*Pi/m] - Exp[2*I*k*Pi/n], {h, 1, m - 1}, {k, 1, n - 1}];
a[n_] := T[5, n] // Round;
Array[a, 20] (* Jean-François Alcover, Jul 04 2018 *)
CROSSREFS
Cf. A212801.
Sequence in context: A069600 A244065 A231649 * A272775 A018849 A011814
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 27 2012
STATUS
approved