OFFSET
1,1
COMMENTS
Theorem: Only for a square n is the number M(n) = P(n, 5) + n also square, where P(x,k) = x*(x+1)*...*(x+k-1) is the Pochhammer function (rising factorial).
This sequence contains squares M(n) for the squares n from A000290.
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, Pochhammer Symbol.
Wikipedia, Metallic mean.
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
a(n) = (A261391(n))^2 = ((n-th metallic mean)^5 - 1/(n-th metallic mean)^5)^2.
a(n) = n^10 + 10*n^8 + 35*n^6 + 50*n^4 + 25*n^2 = (n^5 + 5*n^3 + 5*n)^2.
G.f.: x*(1 +x)*(121 +5272*x +81868*x^2 +429544*x^3 +780790*x^4 +429544*x^5 +81868*x^6 +5272*x^7 +121*x^8) / (1-x)^11. - Colin Barker, May 06 2016
PROG
(Magma) [n*(n+1)*(n+2)*(n+3)*(n+4) + n: n in [1..7000] | IsSquare(n*(n+1)*(n+2)*(n+3)*(n+4) + n)]
(PARI) Vec(x*(1 +x)*(121 +5272*x +81868*x^2 +429544*x^3 +780790*x^4 +429544*x^5 +81868*x^6 +5272*x^7 +121*x^8)/(1-x)^11 + O(x^50)) \\ Colin Barker, May 06 2016
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Jaroslav Krizek, May 06 2016
STATUS
approved