login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272777
In the interval [prime(n), 2*prime(n)], the greatest k with the maximal number of divisors.
2
4, 6, 10, 12, 20, 24, 30, 36, 36, 48, 60, 72, 72, 84, 90, 96, 108, 120, 120, 120, 120, 120, 120, 168, 180, 180, 180, 180, 180, 180, 240, 240, 240, 240, 240, 240, 240, 240, 240, 336, 336, 360, 360, 360, 360, 360, 420, 420, 420, 420
OFFSET
1,1
COMMENTS
The different values of the sequence are union of highly composite numbers (A002182, n>=3) and the numbers {10, 20, 30, 72, 84, 90, 96, 108, 168, 336, 420,...}.
LINKS
EXAMPLE
Let n=5, prime(n)=11. In interval [11,22] we have 3 numbers 12,18 and 20 with the maximal number of divisors in this interval(6). Since 20 is the most of them, then a(5)=20.
MATHEMATICA
Table[First@ MaximalBy[Reverse@ Range[Prime@ n, 2 Prime@ n], DivisorSigma[0, #] &], {n, 50}] (* Michael De Vlieger, May 09 2016, Version 10 *)
PROG
(PARI) a(n) = {my(nb = 2*prime(n) - prime(n) + 1, vd = vector(nb, i, numdiv(prime(n)+i-1)), vmax = vecmax(vd), k = nb); while (vd[k] != vmax, k--); k+prime(n)-1; } \\ Michel Marcus, May 07 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 06 2016
STATUS
approved