login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272779
Numbers n such that n*(n+1)/2 - sigma(n) = concat(s,t) and n = s + t, where sigma(n) is the sum of the divisors of n.
1
10, 15, 24, 136, 196, 1266, 5217, 8236, 8695, 46338, 98826, 181000, 387145, 705250, 1226175, 1291122, 3809269, 8778718, 9294985, 37478179, 49945002, 63158635, 159342696, 175624512, 419753094, 4606837030, 4939169059, 10229566834
OFFSET
1,1
EXAMPLE
10*11/2 - sigma(10) = 55 - 18 = 37 and 3 + 7 = 10;
5217*5218/2 - sigma(5217) = 13611153 - 7296 = 13603857 and 1360 + 3857 = 5217.
MAPLE
with(numtheory): P:=proc(q) local a, b, c, i, n;
for n from 1 to q do c:=n*(n+1)/2-sigma(n); for i from 1 to ilog10(c) do
a:=trunc(c/10^i); b:=c-a*10^i; if a+b=n then print(n); break;
fi; od; od; end: P(10^9);
MATHEMATICA
Select[Range[10^5], Function[n, Total@ Boole@ Function[k, n == First@ # + Last@ # & /@ Map[FromDigits /@ TakeDrop[IntegerDigits@ k, #] &, Range[IntegerLength@ k - 1]]][n (n + 1)/2 - DivisorSigma[1, n]] > 0]] (* Michael De Vlieger, May 07 2016, Version 10.2 *)
ok[t_, n_] := Catch@ Block[{p=10}, While[p<t, If[n == Mod[t, p] + Floor[t/p], Throw@ True, p *= 10]]; False]; Select[ Range[10^5], ok[# (# + 1)/2 - DivisorSigma[1, #], #] &] (* Giovanni Resta, May 07 2016, older Mma, faster *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, May 06 2016
EXTENSIONS
a(15)-a(28) from Giovanni Resta, May 07 2016
STATUS
approved