login
A272771
Smallest k in the interval [prime(n), 2*prime(n)], such that k has the maximal number of divisors in this interval.
3
4, 6, 6, 12, 12, 24, 24, 36, 36, 48, 60, 60, 60, 60, 60, 60, 60, 120, 120, 120, 120, 120, 120, 120, 180, 180, 180, 180, 180, 180, 240, 240, 240, 240, 240, 240, 240, 240, 240, 240, 240, 360, 360, 360, 360, 360, 360
OFFSET
1,1
COMMENTS
Conjecturally the different values of the sequence are highly composite numbers (A002182, n>=3).
LINKS
EXAMPLE
Let n=5, prime(n)=11. In interval [11,22] we have 3 numbers 12,18 and 20 with the maximal number of divisors in this interval(6). Since 12 is the smallest of them, then a(5)=12.
MATHEMATICA
Table[Function[p, First@ FirstPosition[#, Max@ #] + p - 1 &@ Map[DivisorSigma[0, #] &, Range[p, 2 p]]]@ Prime@ n, {n, 80}] (* Michael De Vlieger, May 07 2016, Version 10 *)
CROSSREFS
Sequence in context: A304409 A081732 A079033 * A346675 A077038 A379445
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 06 2016
STATUS
approved