login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272773
Number of n-step self-avoiding nonintersecting walks on the square lattice with diagonals allowed (corresponds to using the Moore neighborhood).
10
1, 8, 56, 360, 2240, 13696, 82808, 496656, 2961136, 17573608, 103911424, 612577272, 3602222736, 21137815952, 123811421128, 724064474968, 4228582808424
OFFSET
0,2
COMMENTS
The path cannot return to a lattice point nor intersect with itself (which IS allowed in A272763).
The Moore neighborhood characterizes king tours. - Rainer Rosenthal, Jan 06 2019
MAPLE
# For starting point stp and list Ldir of n directions (1..8)
# construct the points of the whole path and count them.
# In order to avoid crossings consider the n midpoints, too.
# If there are 2*n+1 then the path is self-avoiding and uncrossed.
isNice := proc(Ldir) local Delta, dir, ep, mp, path;
Delta := [[1, 0], [1, 1], [0, 1], [-1, 1], [-1, 0], [-1, -1], [0, -1], [1, -1]];
ep := [0, 0]; path := {ep};
for dir in Ldir do
mp := ep + Delta[dir];
ep := mp + Delta[dir];
path := {op(path), mp, ep};
od;
return evalb(nops(path)=2*nops(Ldir)+1);
end:
# Count only king tours which are nice, i.e. self-avoiding and uncrossed.
A272773 := proc(n) local count, T, p;
count := 0:
T := combinat[cartprod]([seq([$1..8], j=1..n)]):
while not T[finished] do
p := T[nextvalue]();
if isNice(p) then count := count+1; fi;
od:
return count;
end: # Rainer Rosenthal, Jan 06 2019
MATHEMATICA
mo = Most@Tuples[{-1, 1, 0}, 2]; a[0] = 1; a[tg_, p_: {{0, 0}}] := Block[{e, z = Last@p, w, mv = {}}, Do[w = {z+e, z+2*e}; If[Intersection[w, p] == {}, AppendTo[mv, w]], {e, mo}]; If[tg == 1, Length[mv], Sum[a[tg-1, Join[p, e]], {e, mv}]]]; a /@ Range[0, 7] (* Corrected following a suggestion by Rainer Rosenthal, Giovanni Resta, Jan 06 2019 *)
CROSSREFS
KEYWORD
nonn,walk,more
AUTHOR
Giovanni Resta, May 06 2016
EXTENSIONS
a(5)-a(7) corrected by Rainer Rosenthal, Jan 06 2019
a(8)-a(16) from Hugo Pfoertner, Jan 06 2019
STATUS
approved