login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A339849 Square array T(n,k), n >= 2, k >= 2, read by antidiagonals, where T(n,k) is the number of Hamiltonian circuits within parallelograms of size n X k on the triangular lattice. 11
1, 1, 1, 1, 4, 1, 1, 13, 13, 1, 1, 44, 80, 44, 1, 1, 148, 549, 549, 148, 1, 1, 498, 3851, 7104, 3851, 498, 1, 1, 1676, 26499, 104100, 104100, 26499, 1676, 1, 1, 5640, 183521, 1475286, 3292184, 1475286, 183521, 5640, 1, 1, 18980, 1269684, 20842802, 100766213, 100766213, 20842802, 1269684, 18980, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

2,5

LINKS

Seiichi Manyama, Antidiagonals n = 2..13, flattened

M. Peto, Studies of protein designability using reduced models, Thesis, 2007.

FORMULA

T(n,k) = T(k,n).

EXAMPLE

Square array T(n,k) begins:

  1,   1,     1,       1,         1,          1, ...

  1,   4,    13,      44,       148,        498, ...

  1,  13,    80,     549,      3851,      26499, ...

  1,  44,   549,    7104,    104100,    1475286, ...

  1, 148,  3851,  104100,   3292184,  100766213, ...

  1, 498, 26499, 1475286, 100766213, 6523266332, ...

PROG

(Python)

# Using graphillion

from graphillion import GraphSet

def make_T_nk(n, k):

    grids = []

    for i in range(1, k + 1):

        for j in range(1, n):

            grids.append((i + (j - 1) * k, i + j * k))

            if i < k:

                grids.append((i + (j - 1) * k, i + j * k + 1))

    for i in range(1, k * n, k):

        for j in range(1, k):

            grids.append((i + j - 1, i + j))

    return grids

def A339849(n, k):

    universe = make_T_nk(n, k)

    GraphSet.set_universe(universe)

    cycles = GraphSet.cycles(is_hamilton=True)

    return cycles.len()

print([A339849(j + 2, i - j + 2) for i in range(11 - 1) for j in range(i + 1)])

CROSSREFS

Rows and columns 3..10 give A339850, A339851, A339852, A338970, A339622, A339960, A339961, A339962.

Main diagonal gives A339854.

Cf. A339190.

Sequence in context: A212801 A147565 A022167 * A064281 A267318 A050154

Adjacent sequences:  A339846 A339847 A339848 * A339850 A339851 A339852

KEYWORD

nonn,tabl

AUTHOR

Seiichi Manyama, Dec 19 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 22 19:11 EDT 2021. Contains 345388 sequences. (Running on oeis4.)