login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339850
Number of Hamiltonian circuits within parallelograms of size 3 X n on the triangular lattice.
2
1, 4, 13, 44, 148, 498, 1676, 5640, 18980, 63872, 214944, 723336, 2434192, 8191616, 27566672, 92768192, 312186304, 1050578720, 3535439040, 11897565568, 40038044736, 134737229824, 453421769728, 1525868548224, 5134898635008, 17280115002368, 58151561641216
OFFSET
2,2
FORMULA
G.f.: (x*(1+x))^2/(1-2*x-4*x^2-2*x^3).
a(n) = 2*a(n-1) + 4*a(n-2) + 2*a(n-3) for n > 4.
EXAMPLE
a(2) = 1:
*---*
/ /
* *
/ /
*---*
a(3) = 4:
* *---* *---*---*
/ \ / / \ /
* * * *---* *
/ / / /
*---*---* *---*---*
*---*---* *---*---*
/ / / /
* * * * *---*
/ / \ / / \
*---* * *---*---*
MATHEMATICA
Drop[CoefficientList[Series[(x (1 + x))^2/(1 - 2 x - 4 x^2 - 2 x^3), {x, 0, 28}], x], 2] (* Michael De Vlieger, Jul 06 2021 *)
PROG
(PARI) my(N=66, x='x+O('x^N)); Vec((x*(1+x))^2/(1-2*x-4*x^2-2*x^3))
(Python)
# Using graphillion
from graphillion import GraphSet
def make_T_nk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
if i < k:
grids.append((i + (j - 1) * k, i + j * k + 1))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A339849(n, k):
universe = make_T_nk(n, k)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles(is_hamilton=True)
return cycles.len()
def A339850(n):
return A339849(3, n)
print([A339850(n) for n in range(2, 21)])
CROSSREFS
Row 3 of A339849.
Cf. A339200.
Sequence in context: A257674 A027123 A291236 * A273904 A027125 A027127
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 19 2020
STATUS
approved