This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A267318 Continued fraction expansion of e^(1/5). 0
 1, 4, 1, 1, 14, 1, 1, 24, 1, 1, 34, 1, 1, 44, 1, 1, 54, 1, 1, 64, 1, 1, 74, 1, 1, 84, 1, 1, 94, 1, 1, 104, 1, 1, 114, 1, 1, 124, 1, 1, 134, 1, 1, 144, 1, 1, 154, 1, 1, 164, 1, 1, 174, 1, 1, 184, 1, 1, 194, 1, 1, 204, 1, 1, 214, 1, 1, 224, 1, 1, 234, 1, 1, 244, 1, 1, 254, 1, 1, 264, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS e^(1/5) is a transcendental number. In general, the ordinary generating function for the continued fraction expansion of e^(1/k), with k = 1, 2, 3..., is (1 + (k - 1)*x + x^2 - (k + 1)*x^3 + 7*x^4 - x^5)/(1 - x^3)^2. LINKS Eric Weisstein's World of Mathematics, e Continued Fraction Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,-1). FORMULA G.f.: (1 + 4*x + x^2 - x^3 + 6*x^4 - x^5)/(1 - x^3)^2. a(n) = 1 + (3 + 10*floor(n/3))*(1 - (n-1)^2 mod 3). [Bruno Berselli, Feb 04 2016] EXAMPLE e^(1/5) = 1 + 1/(4 + 1/(1 + 1/(1 + 1/(14 + 1/(1 + 1/...))))). MATHEMATICA ContinuedFraction[Exp[1/5], 82] LinearRecurrence[{0, 0, 2, 0, 0, -1}, {1, 4, 1, 1, 14, 1}, 82] CoefficientList[Series[(1 + 4 x + x^2 - x^3 + 6 x^4 - x^5) / (x^3 - 1)^2, {x, 0, 70}], x] (* Vincenzo Librandi, Jan 13 2016 *) Table[1 + (3 + 10 Floor[n/3]) (1 - Mod[(n - 1)^2, 3]), {n, 0, 90}] (* Bruno Berselli, Feb 04 2016 *) PROG (MAGMA) [1+(3+10*Floor(n/3))*(1-(n-1)^2 mod 3): n in [0..90]]; // Bruno Berselli, Feb 04 2016 CROSSREFS Cf. A092514. Cf. continued fraction expansion of e^(1/k): A003417 (k=1), A058281 (k=2), A078689 (k=3), A078688 (k=4), this sequence (k=5). Sequence in context: A147565 A022167 A064281 * A050154 A179454 A058711 Adjacent sequences:  A267315 A267316 A267317 * A267319 A267320 A267321 KEYWORD nonn,cofr,easy AUTHOR Ilya Gutkovskiy, Jan 13 2016 EXTENSIONS Edited by Bruno Berselli, Feb 04 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 04:21 EST 2019. Contains 319323 sequences. (Running on oeis4.)