login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array T(n,k), n >= 2, k >= 2, read by antidiagonals, where T(n,k) is the number of Hamiltonian circuits within parallelograms of size n X k on the triangular lattice.
11

%I #34 Dec 26 2020 02:42:01

%S 1,1,1,1,4,1,1,13,13,1,1,44,80,44,1,1,148,549,549,148,1,1,498,3851,

%T 7104,3851,498,1,1,1676,26499,104100,104100,26499,1676,1,1,5640,

%U 183521,1475286,3292184,1475286,183521,5640,1,1,18980,1269684,20842802,100766213,100766213,20842802,1269684,18980,1

%N Square array T(n,k), n >= 2, k >= 2, read by antidiagonals, where T(n,k) is the number of Hamiltonian circuits within parallelograms of size n X k on the triangular lattice.

%H Seiichi Manyama, <a href="/A339849/b339849.txt">Antidiagonals n = 2..13, flattened</a>

%H M. Peto, <a href="https://doi.org/10.31274/rtd-180813-17105">Studies of protein designability using reduced models</a>, Thesis, 2007.

%F T(n,k) = T(k,n).

%e Square array T(n,k) begins:

%e 1, 1, 1, 1, 1, 1, ...

%e 1, 4, 13, 44, 148, 498, ...

%e 1, 13, 80, 549, 3851, 26499, ...

%e 1, 44, 549, 7104, 104100, 1475286, ...

%e 1, 148, 3851, 104100, 3292184, 100766213, ...

%e 1, 498, 26499, 1475286, 100766213, 6523266332, ...

%o (Python)

%o # Using graphillion

%o from graphillion import GraphSet

%o def make_T_nk(n, k):

%o grids = []

%o for i in range(1, k + 1):

%o for j in range(1, n):

%o grids.append((i + (j - 1) * k, i + j * k))

%o if i < k:

%o grids.append((i + (j - 1) * k, i + j * k + 1))

%o for i in range(1, k * n, k):

%o for j in range(1, k):

%o grids.append((i + j - 1, i + j))

%o return grids

%o def A339849(n, k):

%o universe = make_T_nk(n, k)

%o GraphSet.set_universe(universe)

%o cycles = GraphSet.cycles(is_hamilton=True)

%o return cycles.len()

%o print([A339849(j + 2, i - j + 2) for i in range(11 - 1) for j in range(i + 1)])

%Y Rows and columns 3..10 give A339850, A339851, A339852, A338970, A339622, A339960, A339961, A339962.

%Y Main diagonal gives A339854.

%Y Cf. A339190.

%K nonn,tabl

%O 2,5

%A _Seiichi Manyama_, Dec 19 2020