login
A120763
a(1) = 2. a(n) = a(n-1)*(largest prime occurring earlier in the sequence) - 1.
1
2, 3, 8, 23, 528, 12143, 147452448, 1790515076063, 21742224568633008, 264015832936910616143, 3205944259352905611824448, 38929781141322332844384272063, 472724332399077087729358215661008, 5740291568321993076297596812771620143
OFFSET
1,1
EXAMPLE
Among the first 4 terms of the sequence, 23 is the largest prime. So a(5) = a(4)*23 -1 = 23*23 -1 = 528.
PROG
(PARI) {m=13; print1(a=2, ", "); v=[a]; for(n=2, m, b=a; v=vecsort(v); j=#v; a=0; while(a<1, k=v[j]; if(isprime(k), print1(a=b*k-1, ", "); v=concat(v, a), j--)))} \\ Klaus Brockhaus, Aug 17 2006
CROSSREFS
Cf. A120762.
Sequence in context: A365118 A032096 A301462 * A120708 A327009 A271269
KEYWORD
nonn,changed
AUTHOR
Leroy Quet, Jul 03 2006
EXTENSIONS
More terms from Klaus Brockhaus, Aug 17 2006.
a(14) added by Robert C. Lyons, Nov 16 2024.
STATUS
approved