OFFSET
0,4
COMMENTS
Inverse binomial transform of even double factorials (A000165) with 0 prepended: [0, 1, 2, 8, 48 ...].
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..300
Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From N. J. A. Sloane, Feb 06 2013
FORMULA
E.g.f.: -e^(-x)*log(1-2*x)/2.
a(n) = Sum_{i=0..n-1} (-1)^(n-1-i) * C(n,i+1) * i! * 2^i.
a(n) ~ (n-1)! * 2^(n-1) * exp(-1/2). - Vaclav Kotesovec, Oct 08 2013
From Vladimir Reshetnikov, Oct 28 2015: (Start)
a(n) = Sum_{k=0..n-1} A000354(k)*(-1)^(n+k+1).
Recurrence: a(0) = 0, a(1) = 1, a(2) = 0, a(n) = 2*(n-2)*a(n-3) + (4*n-7)*a(n-2) + 2*(n-2)*a(n-1). (End)
a(n) = (-1)^(n+1)*n*hypergeom([1-n,1,1],[2],2). - Peter Luschny, May 09 2017
MAPLE
a:= proc(n) option remember; `if`(n<3, n*(2-n),
(2*n-4)*(a(n-1) +a(n-3)) +(4*n-7)*a(n-2))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Oct 08 2013
A120765 := n -> (-1)^(n+1)*n*hypergeom([1-n, 1, 1], [2], 2):
seq(simplify(A120765(n)), n=0..20); # Peter Luschny, May 09 2017
MATHEMATICA
CoefficientList[Series[-E^(-x)*Log[1-2*x]/2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 08 2013 *)
PROG
(PARI) x='x+O('x^33); concat([0], Vec(serlaplace(-exp(-x)*log(1-2*x)/2))) \\ Joerg Arndt, Jun 29 2015
(PARI) vector(30, n, n--; sum(k=0, n-1, (-1)^(n-1-k) * binomial(n, k+1) * k! * 2^k)) \\ Altug Alkan, Oct 28 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Max Alekseyev, Jul 03 2006
EXTENSIONS
Formula corrected by Max Alekseyev, Sep 15 2009
STATUS
approved