Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jan 31 2019 19:34:55
%S 1,0,75,122220,757275750,12713292692100,474415445827323000,
%T 34461884930947363890000,4431555785100983345799993000,
%U 939388724430508823324694340500000
%N a(n) is the number of 2-regular 3-hypergraphs on 3n labeled vertices. (In a 3-hypergraph, each hyper-edge is a proper 3-set; 2-regular implies that each vertex is in exactly 2 hyperedges.)
%C P-recursive
%H Denis S. Krotov, Konstantin V. Vorob'ev, <a href="https://arxiv.org/abs/1812.02166">On unbalanced Boolean functions attaining the bound 2n/3-1 on the correlation immunity</a>, arXiv:1812.02166 [math.CO], 2018.
%H Marni Mishna, <a href="https://web.archive.org/web/20070623105521/http://algo.inria.fr/mishna/Reg-Asympt/reg-asympt.html">Maple worksheet</a>
%F Recurrence: {a(0) = 1, a(1) = 0, (361631520*n + 1358261784*n^2 + 2841968052*n^3 + 3241507005*n^5 + 3725654130*n^4 + 1922779782*n^6 + 781684101*n^7 + 214347870*n^8 + 37889775*n^9 + 3897234*n^10 + 177147*n^11 + 39916800)*a(n) + (870112800*n + 1655958600*n^2 + 1805971896*n^3 + 561697416*n^5 + 1244162430*n^4 + 166255740*n^6 + 31125384*n^7 + 3346110*n^8 + 157464*n^9 + 199584000)*a(n + 1) + (70976400*n + 86362056*n^2 + 57212568*n^3 + 5161320*n^5 + 22352760*n^4 + 653184*n^6 + 34992*n^7 + 24393600)*a(n + 2) + (-468192*n-411840-198432*n^2-37152*n^3-2592*n^4)*a(n + 3) + 64*a(n + 4), a(2) = 75, a(3) = 122220}.
%F Differential equation satisfied by generating series A(t)=sum a(n) t^(3n)/(3n)!: {F(0) = 1, 16*t^5*(-2 + t^3)^3*(d^2/dt^2)F(t) + 8*t*(t^9-20*t^3 + 8)*(-2 + t^3)^2*(d/dt)F(t) + t^6*(t^3 + 10)*(t^3-4)*(-2 + t^3)^2*F(t)}.
%F a(n) ~ 3^(4*n+1/2) * n^(4*n) / (2^n * exp(4*n+1)). - _Vaclav Kotesovec_, Mar 11 2014
%e One of the 75 2-regular 3-hypergraphs on 6 vertices: {1,2,3} {4,5,6} {1,2,4} {3,5,6}.
%Y Cf. A025035, A110101, A110103, A001205.
%K easy,nonn
%O 0,3
%A _Marni Mishna_, Jul 11 2005
%E Replaced broken link, _Vaclav Kotesovec_, Mar 11 2014