OFFSET
0,3
COMMENTS
A Delannoy path of length n is a path from (0,0) to (n,n), consisting of steps E=(1,0), N=(0,1) and D=(1,1).
Row sums are the central Delannoy numbers (A001850).
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
R. A. Sulanke, Objects counted by the central Delannoy numbers, J. Integer Seq. 6 (2003), no. 1, Article 03.1.5.
FORMULA
EXAMPLE
T(2,1) = 8 because we have DN(E), DE(N), N(E)D, ND(E), NNE(E), E(N)D, ED(N) and EEN(N) (the return E or N steps are shown between parentheses).
Triangle begins:
1;
1, 2;
1, 8, 4;
1, 26, 28, 8;
1, 88, 136, 80, 16;
MAPLE
R:=(1-z-sqrt(1-6*z+z^2))/2/z: G:=1/(1-z-2*t*z*R): Gser:=simplify(series(G, z=0, 12)): P[0]:=1: for n from 1 to 9 do P[n]:=coeff(Gser, z^n) od: for n from 0 to 10 do seq(coeff(t*P[n], t^k), k=1..n+1) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jul 11 2005
STATUS
approved