login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110106
a(n) is the number of coverings of 1..n by cyclic words of length 3n, such that each value from 1 to n appears precisely twice. That is, the union of all the letters in all of the words of a given covering is the multiset {1,1,2,2,...,n,n}. Repeats of words are allowed in a given covering.
3
1, 6, 3960, 24151680, 577882166400, 38039350155206400, 5605398331566095462400, 1614162682147590619140096000, 824800497779996439355497811968000
OFFSET
0,2
COMMENTS
P-recursive.
FORMULA
Differential equation satisfied by F(t)=sum a(n) t^(3n)/(3n!) {F(0) = 1, (6*t^2-12*t^5+t^8)*F(t) + (-4*t^6-2+16*t^3)*(d/dt)F(t) + 4*t^4*(d^2/dt^2)F(t)};
recurrence satisfied by a(n): {(40320 + 328752*n + 78732*n^7 + 6561*n^8 + 1816668*n^3 + 1818369*n^4 + 1102248*n^5 + 398034*n^6 + 1063116*n^2)*a(n) + (-161280 - 508608*n - 453600*n^3 - 173340*n^4 - 34992*n^5 - 2916*n^6 - 661104*n^2)*a(n+1) + (12432 + 20070*n + 12114*n^2 + 3240*n^3 + 324*n^4)*a(n+2) - 2*a(n+3), a(1) = 6, a(0) = 1, a(2) = 3960}.
a(n) ~ 2^n * 3^(4*n + 1/2) * n^(4*n) / exp(4*n). - Vaclav Kotesovec, Oct 24 2023
EXAMPLE
a(1)=6: {123, 132} {112, 233} {113, 322} {133, 122} {123, 123} {132, 132}.
MATHEMATICA
RecurrenceTable[{(40320 + 328752*n + 78732*n^7 + 6561*n^8 + 1816668*n^3 + 1818369*n^4 + 1102248*n^5 + 398034*n^6 + 1063116*n^2) * a[n] + (-161280 - 508608*n - 453600*n^3 - 173340*n^4 - 34992*n^5 - 2916*n^6 - 661104*n^2) * a[n + 1] + (12432 + 20070*n + 12114*n^2 + 3240*n^3 + 324*n^4) * a[n + 2] - 2*a[n + 3] == 0, a[0] == 1, a[1] == 6, a[2] == 3960}, a, {n, 0, 15}] (* Vaclav Kotesovec, Oct 24 2023 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Marni Mishna, Jul 11 2005
STATUS
approved