login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110106 a(n) is the number of coverings of 1..n by cyclic words of length 3n, such that each value from 1 to n appears precisely twice. That is, the union of all the letters in all of the words of a given covering is the multiset {1,1,2,2,...,n,n}. Repeats of words are allowed in a given covering. 3
1, 6, 3960, 24151680, 577882166400, 38039350155206400, 5605398331566095462400, 1614162682147590619140096000, 824800497779996439355497811968000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

P-recursive.

LINKS

Table of n, a(n) for n=0..8.

FORMULA

Differential equation satisfied by F(t)=sum a(n) t^(3n)/(3n!) {F(0) = 1, (6*t^2-12*t^5+t^8)*F(t) + (-4*t^6-2+16*t^3)*(d/dt)F(t) + 4*t^4*(d^2/dt^2)F(t)};

recurrence satisfied by a(n): {(40320 + 328752*n + 78732*n^7 + 6561*n^8 + 1816668*n^3 + 1818369*n^4 + 1102248*n^5 + 398034*n^6 + 1063116*n^2)*a(n) + (-161280 - 508608*n - 453600*n^3 - 173340*n^4 - 34992*n^5 - 2916*n^6 - 661104*n^2)*a(n+1) + (12432 + 20070*n + 12114*n^2 + 3240*n^3 + 324*n^4)*a(n+2) - 2*a(n+3), a(1) = 6, a(0) = 1, a(2) = 3960}.

EXAMPLE

a(1)=6: {123, 132} {112, 233} {113, 322} {133, 122} {123, 123} {132, 132}.

CROSSREFS

Cf. A052205, A110104, A110105, A108242.

Sequence in context: A048542 A140173 A158663 * A024087 A161845 A317485

Adjacent sequences:  A110103 A110104 A110105 * A110107 A110108 A110109

KEYWORD

easy,nonn

AUTHOR

Marni Mishna, Jul 11 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 00:06 EDT 2021. Contains 345403 sequences. (Running on oeis4.)