login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108242
a(n) is the number of coverings of 1..n by cyclic words of length 3, such that each value from 1 to n appears precisely 3 times. That is, the union of all the letters in all of the words of a given covering is the multiset {1,1,1,2,2,2,...,n,n,n}. Repeats of words are allowed in a given covering.
4
1, 1, 2, 16, 256, 7184, 311944, 19191448, 1584972224, 169021538944, 22595033625856, 3699135711988736, 727774085471066752, 169399730544125355136, 46039989792346454771456, 14447317177670702438831104, 5183889091511674280049885184, 2108937872584292649560886222848
OFFSET
0,3
COMMENTS
The asymptotic growth of the coefficients is a(n) ~ C (3/2)^n (n!)^2 /n with C approx 0.277.
In closed form, C = sqrt(3)/(2*Pi) = 0.27566444771089602475566324915648472... . - Vaclav Kotesovec, Feb 28 2016
LINKS
FORMULA
Exponential generating function satisfies the linear differential equation: {(6 + 499*t^6 + 270*t^4 + 408*t^8 - 162*t^11 - 558*t^9 - 12*t - 96*t^3 + 66*t^2 - 654*t^7 + 60*t^12 + 154*t^10 - 342*t^5 + 9*t^14)*F(t) + (81*t^10 + 72*t^4 + 198*t^6 + 216*t^8 + 9*t^2)*(d^2/dt^2)F(t) + (-474*t^6 - 252*t^10 - 6 + 126*t^3 + 594*t^7 - 66*t^2 + 324*t^9 - 54*t^12 - 420*t^8 + 18*t - 264*t^4 + 378*t^5)*(d/dt)F(t), F(0) = 1}
The a(n) satisfy the recurrence: {a(0) = 1, a(1) = 1, ( - 20779902*n^7 - 134970693*n^6 - 1971620508*n^4 - 2248389*n^8 - 3*n^12 - 4459328640*n - 4242044664*n^3 - 5794678656*n^2 - 618210450*n^5 - 234*n^11 - 1437004800 - 8151*n^10 - 167310*n^9)*a(n) + ( - 7295434560*n - 4550515200 - 914850*n^7 - 5131406304*n^2 - 545289740*n^4 - 2088314700*n^3 - 11400627*n^6 - 95574465*n^5 - 1425*n^9 - 47310*n^8 - 19*n^10)*a(n + 2) + (711103032*n^4 + 8622028800 + 13032306*n^6 + 116250876*n^5 + 2944635984*n^3 + 12385923840*n + 7897844736*n^2 + 18*n^10 + 1404*n^9 + 48708*n^8 + 989496*n^7)*a(n + 3) + ( - 915980400*n - 898128000 - 3060*n^7 - 90090*n^6 - 1499400*n^5 - 15424605*n^4 - 100395540*n^3 - 403611660*n^2 - 45*n^8)*a(n + 4) + (2882376*n^5 + 890994600*n^2 + 2137510944*n + 30916662*n^4 + 210700728*n^3 + 166740*n^6 + 5472*n^7 + 78*n^8 + 2227357440)*a(n + 5) + ( - 1050477120 - 60979*n^6 - 1088733*n^5 - 12105088*n^4 - 27*n^8 - 85853091*n^3 - 379422466*n^2 - 955621272*n - 1944*n^7)*a(n + 6) + (57398400*n + 114*n^6 + 91238400 + 161430*n^4 + 2078100*n^3 + 14985456*n^2 + 6660*n^5)*a(n + 7) + ( - 1225827*n^3 - 58806000 - 63*n^6 - 9078336*n^2 - 92961*n^4 - 3753*n^5 - 35812260*n)*a(n + 8) + (571080*n + 1504800 + 5100*n^3 + 120*n^4 + 81060*n^2)*a(n + 9) + ( - 233178*n - 635976 - 32079*n^2 - 1962*n^3 - 45*n^4)*a(n + 10) + (1116*n + 48*n^2 + 6480)*a(n + 11) + ( - 225*n - 9*n^2 - 1410)*a(n + 12) + 6*a(n + 13) = 0,
with a(2) = 2, a(3) = 16, a(4) = 256, a(5) = 7184, a(6) = 311944, a(7) = 19191448, a(8) = 1584972224, a(9) = 169021538944, a(10) = 22595033625856, a(11) = 3699135711988736, a(12) = 727774085471066752}
EXAMPLE
a(2)=2 because the two cyclic word coverings are {112, 221} and {111, 222}
a(3)=16: {111 222 333} {111 223 233} {112 122 333} {112 133 223} {113 122 233} {113 123 223} {113 132 223} {112 132 233} {113 133 222} {122 123 133} {122 132 133} {112 123 233} {123 123 123} {123 132 123} {123 132 132} {132 132 132}
MATHEMATICA
RecurrenceTable[{-(-10 + n) (-9 + n) (-8 + n) (-7 + n) (-6 + n) (-5 + n) (-4 + n) (-3 + n) (-2 + n) (-1 + n) (25 - 243 n + 243 n^2) a[-11 + n] + 90 (-9 + n) (-8 + n) (-7 + n) (-6 + n) (-5 + n) (-4 + n) (-3 + n) (-2 + n) (-1 + n) a[-10 + n] - 6 (-8 + n) (-7 + n) (-6 + n) (-5 + n) (-4 + n) (-3 + n) (-2 + n) (-1 + n) (52 - 270 n + 243 n^2) a[-9 + n] + 6 (-7 + n) (-6 + n) (-5 + n) (-4 + n) (-3 + n) (-2 + n) (-1 + n) (-40 + 1240 n - 1458 n^2 + 243 n^3) a[-8 + n] - (-6 + n) (-5 + n) (-4 + n) (-3 + n) (-2 + n) (-1 + n) (-917 - 3537 n + 3159 n^2) a[-7 + n] + 6 (-5 + n) (-4 + n) (-3 + n) (-2 + n) (-1 + n) (-711 + 4555 n - 4941 n^2 + 972 n^3) a[-6 + n] - 9 (-4 + n) (-3 + n) (-2 + n) (-1 + n) (-110 - 3557 n + 5128 n^2 - 1944 n^3 + 243 n^4) a[-5 + n] + 6 (-3 + n) (-2 + n) (-1 + n) (-508 + 4580 n - 5022 n^2 + 1215 n^3) a[-4 + n] - 6 (-2 + n) (-1 + n) (692 - 6471 n + 9309 n^2 - 4374 n^3 + 729 n^4) a[-3 + n] + 6 (-1 + n) (-92 + 2798 n - 3726 n^2 + 1215 n^3) a[-2 + n] - 3 (482 - 2451 n + 4206 n^2 - 2916 n^3 + 729 n^4) a[-1 + n] + 6 (511 - 729 n + 243 n^2) a[n] == 0, a[0] == 1, a[1] == 1, a[2] == 2, a[3] == 16, a[4] == 256, a[5] == 7184, a[6] == 311944, a[7] == 19191448, a[8] == 1584972224, a[9] == 169021538944, a[10] == 22595033625856}, a, {n, 0, 20}] (* Vaclav Kotesovec, Feb 28 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Marni Mishna, Jun 17 2005
EXTENSIONS
More terms from Vaclav Kotesovec, Feb 28 2016
STATUS
approved