OFFSET
0,2
COMMENTS
T(n,k) = number of Delannoy paths (A001850) of steps east(E), north(N) and diagonal (D) (i.e., northeast) from (0,0) to (n,n) containing k Ds not preceded by an E.
FORMULA
G.f. G(z, t)=Sum_{n>=k>=0}T(n, k)*z^n*t^k is given by G(z, t)= (1 - z(4 + 2*t) - z^2(4 - 4*t - t^2))^(-1/2)
EXAMPLE
Table begins
\ k...0....1....2....3....4....
n\
0 |...1
1 |...2....1
2 |...8....4....1
3 |..32...24....6....1
4 |.136..128...48....8....1
5 |.592..680..320...80...10....1
The paths ENDD, NDDE, DEND, DNDE, DDEN, DDNE each have 2 Ds not preceded by an E,
and so T(3,2)=6.
MATHEMATICA
T[n_, k_] := SeriesCoefficient[(1-z(4 + 2*t) - z^2 (4 - 4*t - t^2))^(-1/2), {z, 0, n}, {t, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 08 2016 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
David Callan, Jul 20 2005
STATUS
approved