OFFSET
0,2
COMMENTS
LINKS
Robert A. Sulanke, Objects Counted by the Central Delannoy Numbers, Journal of Integer Sequences, Volume 6, 2003, Article 03.1.5.
FORMULA
G.f.: [tz-z+sqrt(1-6z+z^2)]/(1-6z+2tz^2-t^2*z^2).
EXAMPLE
T(2,1)=4 because we have DNE, DEN, NED and END.
Triangle begins:
1;
2,1;
8,4,1;
36,20,6,1;
MAPLE
G:=(t*z-z+sqrt(1-6*z+z^2))/(1-6*z+2*t*z^2-t^2*z^2): Gser:=simplify(series(G, z=0, 13)): P[0]:=1: for n from 1 to 10 do P[n]:=coeff(Gser, z^n) od: for n from 0 to 10 do seq(coeff(t*P[n], t^k), k=1..n+1) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jul 06 2005
STATUS
approved