login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k) = n! * binomial(n, k)*( psi(n-k+1) - psi(k+1) ), read by rows.
2

%I #9 Sep 08 2022 08:45:42

%S 0,1,-1,3,0,-3,11,9,-9,-11,50,80,0,-80,-50,274,650,400,-400,-650,-274,

%T 1764,5544,6300,0,-6300,-5544,-1764,13068,51156,82908,44100,-44100,

%U -82908,-51156,-13068,109584,513792,1072512,1016064,0,-1016064,-1072512,-513792,-109584

%N Triangle T(n, k) = n! * binomial(n, k)*( psi(n-k+1) - psi(k+1) ), read by rows.

%H G. C. Greubel, <a href="/A157521/b157521.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n, k) = n! * (d/dk) binomial(n, k).

%F Sum_{k=0..n} T(n, k) = 0.

%F From _G. C. Greubel_, Jan 13 2022: (Start)

%F T(n, k) = n! * binomial(n, k)*( psi(n-k+1) - psi(k+1) ), psi = digamma function.

%F T(2*n, n) = 0.

%F T(n, n-k) = - T(n, k), k <= floor(n/2).

%F T(n, 0) = A000254(n). (End)

%e Triangle begins as:

%e 0;

%e 1, -1;

%e 3, 0, -3;

%e 11, 9, -9, -11;

%e 50, 80, 0, -80, -50;

%e 274, 650, 400, -400, -650, -274;

%e 1764, 5544, 6300, 0, -6300, -5544, -1764;

%e 13068, 51156, 82908, 44100, -44100, -82908, -51156, -13068;

%e 109584, 513792, 1072512, 1016064, 0, -1016064, -1072512, -513792, -109584;

%t T[n_, k_]:= n!*Binomial[n, k]*(PolyGamma[0, n-k+1] - PolyGamma[0, k+1]);

%t Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jan 13 2022 *)

%o (Magma) [Round(Factorial(n)*Binomial(n,k)*(Psi(n-k+1) - Psi(k+1))): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Jan 13 2022

%o (Sage) flatten([[factorial(n)*binomial(n,k)*(psi(n-k+1) - psi(k+1)) for k in (0..n)] for n in (0..10)]) # _G. C. Greubel_, Jan 13 2022

%Y Cf. A000254, A157525.

%K sign,tabl

%O 0,4

%A _Roger L. Bagula_, Mar 02 2009

%E Edited by _G. C. Greubel_, Jan 13 2022