login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327678
Number of colored compositions of 2n using all colors of an n-set such that all parts have different color patterns and the patterns for parts i are sorted and have i colors (in arbitrary order).
2
1, 1, 60, 7512, 1546042, 541742985, 267920998650, 180675370176420, 160654598650809964, 178879511446386682365, 243695196628845859469020, 400544315906804782687318938, 777083567062772102871149374020, 1755895011129198763056241198051342
OFFSET
0,3
LINKS
FORMULA
a(n) = A327673(2n,n).
MAPLE
b:= proc(n, i, k, p) option remember;
`if`(n=0, p!, `if`(i<1, 0, add(binomial(k^i, j)*
b(n-i*j, min(n-i*j, i-1), k, p+j)/j!, j=0..n/i)))
end:
a:= n-> add(b(2*n$2, i, 0)*(-1)^(n-i)*binomial(n, i), i=0..n):
seq(a(n), n=0..15);
MATHEMATICA
b[n_, i_, k_, p_] := b[n, i, k, p] =
If[n == 0, p!, If[i < 1, 0, Sum[Binomial[k^i, j]*
b[n - i*j, Min[n - i*j, i - 1], k, p + j]/j!, {j, 0, n/i}]]];
a[n_] := Sum[b[2n, 2n, i, 0]*(-1)^(n-i)*Binomial[n, i], {i, 0, n}];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 11 2022, after Alois P. Heinz *)
CROSSREFS
Cf. A327673.
Sequence in context: A091753 A336629 A303790 * A130214 A295815 A146498
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 21 2019
STATUS
approved