The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327679 Number of colored integer partitions of n using all colors of an initial interval of the color palette such that parts i have distinct color patterns in arbitrary order and each pattern for a part i has i colors in (weakly) increasing order. 2
 1, 1, 4, 18, 112, 732, 6156, 53720, 559584, 6138216, 76636080, 1006039320, 14693223032, 224774090592, 3756082129296, 65650522695344, 1236568354232176, 24299076684879264, 509677108276779168, 11124779898457678240, 257204596479739401760, 6174928911548312072704 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..200 MAPLE b:= proc(n, i, k) option remember; `if`(n=0, 1,       `if`(i<1, 0, add(b(n-i*j, min(n-i*j, i-1), k)*        binomial(binomial(k+i-1, i), j)*j!, j=0..n/i)))     end: a:= n-> add(add(b(n\$2, i)*(-1)^(k-i)*binomial(k, i), i=0..k), k=0..n): seq(a(n), n=0..22); MATHEMATICA b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i j, Min[n - i j, i-1], k]Binomial[Binomial[k+i-1, i], j] j!, {j, 0, n/i}]]]; a[n_] := Sum[Sum[b[n, n, i](-1)^(k-i)Binomial[k, i], {i, 0, k}], {k, 0, n}]; a /@ Range[0, 22] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *) CROSSREFS Row sums of A309973. Sequence in context: A060223 A144085 A003708 * A330353 A000986 A143920 Adjacent sequences:  A327676 A327677 A327678 * A327680 A327681 A327682 KEYWORD nonn AUTHOR Alois P. Heinz, Sep 21 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 30 08:44 EDT 2021. Contains 346352 sequences. (Running on oeis4.)