The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327681 Number of colored integer partitions of 2n using all colors of an n-set such that parts i have distinct color patterns in arbitrary order and each pattern for a part i has i colors in (weakly) increasing order. 2
 1, 1, 21, 619, 32621, 2619031, 298688151, 45747815408, 9130881915237, 2302153903685914, 716914926484850891, 270654298469985496639, 121905995767297357401683, 64616493201145984241278851, 39838866068219563302546530228, 28277347692301453998991014108124 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..200 (terms 0..100 from Alois P. Heinz) FORMULA a(n) = A309973(2n,n). MAPLE b:= proc(n, i, k) option remember; `if`(n=0, 1,       `if`(i<1, 0, add(b(n-i*j, min(n-i*j, i-1), k)*        binomial(binomial(k+i-1, i), j)*j!, j=0..n/i)))     end: a:= n-> add(b(2*n\$2, i)*(-1)^(n-i)*binomial(n, i), i=0..n): seq(a(n), n=0..17); MATHEMATICA b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k] Binomial[Binomial[k + i - 1, i], j]*j!, {j, 0, n/i}]]]; a[n_] := Sum[b[2n, 2n, i] (-1)^(n-i) Binomial[n, i], {i, 0, n}]; a /@ Range[0, 17] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *) CROSSREFS Cf. A309973. Sequence in context: A296672 A134499 A231852 * A141265 A025752 A163032 Adjacent sequences:  A327678 A327679 A327680 * A327682 A327683 A327684 KEYWORD nonn AUTHOR Alois P. Heinz, Sep 21 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 15 23:51 EDT 2022. Contains 353687 sequences. (Running on oeis4.)