login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327682
Expansion of Product_{k>0} (-1+sqrt(1+4*x^k))/(2*x^k).
3
1, -1, 1, -5, 14, -40, 122, -404, 1362, -4608, 15881, -55709, 197402, -705114, 2539282, -9210196, 33605471, -123262137, 454268676, -1681305246, 6246544735, -23288217459, 87096982499, -326680267261, 1228547420236, -4631474743422, 17499462106763, -66257720483935, 251356773101419
OFFSET
0,4
LINKS
FORMULA
a(n) ~ (-1)^n * c * 4^n / n^(3/2), where c = 1/(2*sqrt(Pi)) * Product_{k>=1} (-1 + sqrt(1 + 4*(-1/4)^k)) / (2*(-1/4)^k) = 0.5396673413761086071059510679780476790558662471136055... - Vaclav Kotesovec, May 06 2021
MATHEMATICA
m = 28; CoefficientList[Series[Product[(-1 + Sqrt[1 + 4*x^k])/(2*x^k), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 06 2021 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (-1+sqrt(1+4*x^k))/(2*x^k)))
(PARI) N=66; x='x+O('x^N); Vec(prod(i=1, N, sum(j=0, N\i, (-1)^j*binomial(2*j, j)*x^(i*j)/(j+1))))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 22 2019
STATUS
approved