login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309867
Expansion of Product_{k>0} (1+sqrt(1-4*x^k))/2.
2
1, -1, -2, -2, -5, -9, -36, -104, -365, -1219, -4213, -14617, -51570, -183084, -656536, -2370066, -8613590, -31478538, -115632718, -426676244, -1580878746, -5878933054, -21936060630, -82100980070, -308146839623, -1159545407027, -4373730398473, -16533813947503
OFFSET
0,3
LINKS
FORMULA
a(n) ~ -c * 2^(2*n - 1) / (sqrt(Pi) * n^(3/2)), where c = Product_{k>=1} (1 + sqrt(1 - 4*(1/4)^k))/2 = 0.4567034206737725013365271429022657551331606541289778092649... - Vaclav Kotesovec, May 06 2021
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[(1+Sqrt[1-4*x^k])/2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 06 2021 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+sqrt(1-4*x^k))/2))
(PARI) N=66; x='x+O('x^N); Vec(prod(i=1, N, 1-sum(j=1, N\i, binomial(2*j-2, j-1)*x^(i*j)/j)))
CROSSREFS
Convolution inverse of A322204.
Sequence in context: A003228 A184713 A110182 * A304584 A193899 A334017
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 22 2019
STATUS
approved