login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309868
Number of uniform hypergraphs on n unlabeled nodes with at least one (possibly empty) hyperedge.
2
1, 2, 4, 8, 20, 78, 2459, 14028740, 29284932080025185, 468863491068204454517854447175206, 1994324729204021501147398087008429477142243091610827370319897909501551
OFFSET
0,2
COMMENTS
A hypergraph is called uniform if all hyperedges have the same cardinality.
LINKS
Jianguo Qian, Enumeration of unlabeled uniform hypergraphs, Discrete Math. 326 (2014), 66--74. MR3188989.
Wikipedia, Hypergraph
FORMULA
a(n) = Sum_{k=0..n} (A309865(n,k) - 1).
EXAMPLE
Non-isomorphic representatives of the a(3) = 8 uniform hypergraphs on 3 unlabeled nodes with at least one hyperedge: {{}}, {1}, {1,2}, {1,2,3}, {12}, {12,13}, {12,13,23}, {123}.
MAPLE
g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x->
[x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]):
h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i]
/igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m
/p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq(
`if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)):
b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n]))
/n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)):
T:= proc(n, k) T(n, k):=`if`(k>n-k, T(n, n-k), b(n$2, [], k)) end:
a:= n-> add(T(n, k)-1, k=0..n):
seq(a(n), n=0..10);
CROSSREFS
Row sums of A309876.
Cf. A309865.
Sequence in context: A100447 A241891 A112278 * A059731 A001315 A340595
KEYWORD
nonn
AUTHOR
Peter Dolland and Alois P. Heinz, Aug 20 2019
STATUS
approved