OFFSET
0,2
COMMENTS
A hypergraph is called uniform if all hyperedges have the same cardinality.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..14
Jianguo Qian, Enumeration of unlabeled uniform hypergraphs, Discrete Math. 326 (2014), 66--74. MR3188989.
Wikipedia, Hypergraph
FORMULA
a(n) = Sum_{k=0..n} (A309865(n,k) - 1).
EXAMPLE
Non-isomorphic representatives of the a(3) = 8 uniform hypergraphs on 3 unlabeled nodes with at least one hyperedge: {{}}, {1}, {1,2}, {1,2,3}, {12}, {12,13}, {12,13,23}, {123}.
MAPLE
g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x->
[x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]):
h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i]
/igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m
/p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq(
`if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)):
b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n]))
/n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)):
T:= proc(n, k) T(n, k):=`if`(k>n-k, T(n, n-k), b(n$2, [], k)) end:
a:= n-> add(T(n, k)-1, k=0..n):
seq(a(n), n=0..10);
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Dolland and Alois P. Heinz, Aug 20 2019
STATUS
approved