%I #16 Aug 22 2019 20:38:33
%S 1,2,4,8,20,78,2459,14028740,29284932080025185,
%T 468863491068204454517854447175206,
%U 1994324729204021501147398087008429477142243091610827370319897909501551
%N Number of uniform hypergraphs on n unlabeled nodes with at least one (possibly empty) hyperedge.
%C A hypergraph is called uniform if all hyperedges have the same cardinality.
%H Alois P. Heinz, <a href="/A309868/b309868.txt">Table of n, a(n) for n = 0..14</a>
%H Jianguo Qian, <a href="https://doi.org/10.1016/j.disc.2014.03.005">Enumeration of unlabeled uniform hypergraphs</a>, Discrete Math. 326 (2014), 66--74. MR3188989.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Hypergraph">Hypergraph</a>
%F a(n) = Sum_{k=0..n} (A309865(n,k) - 1).
%e Non-isomorphic representatives of the a(3) = 8 uniform hypergraphs on 3 unlabeled nodes with at least one hyperedge: {{}}, {1}, {1,2}, {1,2,3}, {12}, {12,13}, {12,13,23}, {123}.
%p g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x->
%p [x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]):
%p h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i]
%p /igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m
%p /p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq(
%p `if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)):
%p b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n]))
%p /n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)):
%p T:= proc(n, k) T(n, k):=`if`(k>n-k, T(n, n-k), b(n$2, [], k)) end:
%p a:= n-> add(T(n, k)-1, k=0..n):
%p seq(a(n), n=0..10);
%Y Row sums of A309876.
%Y Cf. A309865.
%K nonn
%O 0,2
%A _Peter Dolland_ and _Alois P. Heinz_, Aug 20 2019