login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A168491 a(n) = (-1)^n*Catalan(n). 9
1, -1, 2, -5, 14, -42, 132, -429, 1430, -4862, 16796, -58786, 208012, -742900, 2674440, -9694845, 35357670, -129644790, 477638700, -1767263190, 6564120420, -24466267020, 91482563640, -343059613650, 1289904147324, -4861946401452, 18367353072152, -69533550916004 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Second inverse binomial transform of A001405. Hankel transform of this sequence gives A000012 = [1,1,1,1,1,1,1,...].

Also the expansion of real root of y+y^2=x, With offset 1, series reversion of x+x^2. - Robert G. Wilson v, Mar 07 2011

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..500

Index to sequences related to reversion of series

FORMULA

a(n) = (-1)^n * A000108(n).

G.f.: (sqrt(1+4*x) - 1) / (2*x).

E.g.f.: exp(-2*x)*(BesselI(0, 2*x) + BesselI(1, 2*x)). - Peter Luschny, Aug 26 2012

(n+1)*a(n) +2*(2*n - 1)*a(n-1) = 0. - R. J. Mathar, Oct 06 2012

G.f.: 1 / (1 + x / (1 + x / (1 + x / ...))). - Michael Somos, Jan 03 2013

G.f.: 1/(x*Q(0)) - 1/x, where Q(k)= 1 - (4*k+1)*x/(k+1 - x*(2*k+2)*(4*k+3)/(2*x*(4*k+3) - (2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013

G.f.: G(0)/(2*x) - 1/(2*x), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2)*(1+4*x) - 2*x*(1+4*x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1+4*x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 24 2013

G.f.: G(0)/x - 1/x, where G(k)= k+1 - 2*x*(2*k+1) + 2*x*(k+1)*(2*k+3)/G(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Jul 14 2013

EXAMPLE

G.f. = 1 - x + 2*x^2 - 5*x^3 + 14*x^4 - 42*x^5 + 132*x^6 - 429*x^7 + ...

MATHEMATICA

CoefficientList[InverseSeries[Series[y + y^2, {y, 0, 28}], x]/x, x] (* Robert G. Wilson v, Mar 07 2011 *)

a[ n_] := If[ n < 0, 0, (-1)^n CatalanNumber[n]]; (* Michael Somos, Nov 22 2014 *)

Table[(-1)^n*CatalanNumber[n], {n, 0, 50] (* G. C. Greubel, Jul 23 2016 *)

PROG

(PARI) a(n)=(-1)^n*binomial(2*n, n)/(n+1); \\ Joerg Arndt, May 15 2013

(MAGMA) [(-1)^n*Catalan(n): n in [0..40]]; // Vincenzo Librandi, Nov 16 2014

CROSSREFS

Sequence in context: A287974 A115140 A120588 * A000108 A057413 A126567

Adjacent sequences:  A168488 A168489 A168490 * A168492 A168493 A168494

KEYWORD

sign,less

AUTHOR

Philippe Deléham, Nov 27 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 21:15 EST 2017. Contains 295919 sequences.