login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126567
Sequence generated from the E6 Cartan matrix.
2
1, 2, 5, 14, 42, 132, 430, 1444, 4981, 17594, 63441, 232806, 866870, 3266460, 12426210, 47629020, 183638729, 711285170, 2764753405, 10775740030, 42086252770, 164635420788, 644811687734, 2527808259668, 9916569410301, 38923511495402, 152841133694345, 600349070362454
OFFSET
0,2
FORMULA
Let M = [2,-1,0,0,0,0; -1,2,-1,0,0,0; 0,-1,2,-1,0,-1; 0,0,-1,2,-1,0; 0,0,0,-1,2,0; 0,0,-1,0,0,2] then a(n) is the upper left term in M^n.
G.f.: -(2*x-1)*(2*x^4-16*x^3+20*x^2-8*x+1) / ((x-1)*(3*x-1)*(x^4-16*x^3+20*x^2-8*x+1)). - Colin Barker, May 25 2013
a(n) ~ c*(2 + sqrt(2 + sqrt(3)))^n, where c = (3 - sqrt(3))/24. - Stefano Spezia, Jan 29 2023
a(n) = (3^n + 1)/4 + ((3 + sqrt(3))*((2 - sqrt(2 - sqrt(3)))^n + (2 + sqrt(2 - sqrt(3)))^n) + (3 - sqrt(3))*((2 - sqrt(2 + sqrt(3)))^n + (2 + sqrt(2 + sqrt(3)))^n))/24. - Vaclav Kotesovec, Jan 30 2023
MATHEMATICA
f[n_] := (MatrixPower[{{2, -1, 0, 0, 0, 0}, {-1, 2, -1, 0, 0, 0}, {0, -1, 2, -1, 0, -1}, {0, 0, -1, 2, -1, 0}, {0, 0, 0, -1, 2, 0}, {0, 0, -1, 0, 0, 2}}, n].{1, 0, 0, 0, 0, 0})[[1]]; Table[ f@n, {n, 0, 25}] (* Robert G. Wilson v, Aug 07 2007 *)
PROG
(PARI) a(n) = ([2, -1, 0, 0, 0, 0; -1, 2, -1, 0, 0, 0; 0, -1, 2, -1, 0, -1; 0, 0, -1, 2, -1, 0; 0, 0, 0, -1, 2, 0; 0, 0, -1, 0, 0, 2]^n)[1, 1]; \\ Michel Marcus, Jan 30 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Dec 28 2006
EXTENSIONS
More terms from Robert G. Wilson v, Aug 07 2007
STATUS
approved