OFFSET
0,2
LINKS
Wikipedia, E6 (mathematics)
Index entries for linear recurrences with constant coefficients, signature (12,-55,120,-125,52,-3).
FORMULA
Let M = [2,-1,0,0,0,0; -1,2,-1,0,0,0; 0,-1,2,-1,0,-1; 0,0,-1,2,-1,0; 0,0,0,-1,2,0; 0,0,-1,0,0,2] then a(n) is the upper left term in M^n.
G.f.: -(2*x-1)*(2*x^4-16*x^3+20*x^2-8*x+1) / ((x-1)*(3*x-1)*(x^4-16*x^3+20*x^2-8*x+1)). - Colin Barker, May 25 2013
a(n) ~ c*(2 + sqrt(2 + sqrt(3)))^n, where c = (3 - sqrt(3))/24. - Stefano Spezia, Jan 29 2023
a(n) = (3^n + 1)/4 + ((3 + sqrt(3))*((2 - sqrt(2 - sqrt(3)))^n + (2 + sqrt(2 - sqrt(3)))^n) + (3 - sqrt(3))*((2 - sqrt(2 + sqrt(3)))^n + (2 + sqrt(2 + sqrt(3)))^n))/24. - Vaclav Kotesovec, Jan 30 2023
MATHEMATICA
f[n_] := (MatrixPower[{{2, -1, 0, 0, 0, 0}, {-1, 2, -1, 0, 0, 0}, {0, -1, 2, -1, 0, -1}, {0, 0, -1, 2, -1, 0}, {0, 0, 0, -1, 2, 0}, {0, 0, -1, 0, 0, 2}}, n].{1, 0, 0, 0, 0, 0})[[1]]; Table[ f@n, {n, 0, 25}] (* Robert G. Wilson v, Aug 07 2007 *)
PROG
(PARI) a(n) = ([2, -1, 0, 0, 0, 0; -1, 2, -1, 0, 0, 0; 0, -1, 2, -1, 0, -1; 0, 0, -1, 2, -1, 0; 0, 0, 0, -1, 2, 0; 0, 0, -1, 0, 0, 2]^n)[1, 1]; \\ Michel Marcus, Jan 30 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Dec 28 2006
EXTENSIONS
More terms from Robert G. Wilson v, Aug 07 2007
STATUS
approved