login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168492
Sequence with Hankel transform equal to 3^floor(n^2/2).
3
1, 1, 2, 7, 38, 250, 1748, 12463, 89606, 647710, 4702844, 34286038, 250928732, 1843209556, 13586564072, 100479347647, 745418148806, 5546324817718, 41382983725292, 309586136922898, 2321772733668980, 17453199438926188, 131489046194284568, 992678648890643206
OFFSET
0,3
COMMENTS
Hankel transform is A168493 (a trivial Somos-4 sequence linked to y^2=1-16x+76x^2-96x^3).
LINKS
FORMULA
G.f.: 1/(1-x/(1-x/(1-3x/(1-3x/(1-x/(1-x/(1-3x/(1-3x/(1-x/(1-x/(1-3x/(1-.... (continued fraction);
G.f.: 1/(1-x-x^2/(1-4x-9x^2/(1-4x-x^2/(1-4x-9x^2/(1-4x-x^2/(1-4x-9x^2/(1-... (continued fraction);
G.f.: (1-2*x-sqrt((1-2*x)*(1-14*x+48*x^2)))/(6*x*(1-2*x)).
Recurrence: (n+1)*a(n) = 2*(8*n-3)*a(n-1) - 4*(19*n-31)*a(n-2) + 48*(2*n-5)* a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 2^(3*n+1)/(3*sqrt(3*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012
a(n) = Sum_{k, 0<=k<=n} A168511(n,k)*3^(n-k). - Philippe Deléham, Mar 19 2013
MATHEMATICA
CoefficientList[Series[(1-2*x-Sqrt[(1-2*x)(1-14*x+48*x^2)])/(6*x*(1-2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
CROSSREFS
Sequence in context: A094431 A256032 A209006 * A346646 A032109 A368232
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 27 2009
STATUS
approved