login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168490
Sequence with Hankel transform equal to 2^floor(n^2/2).
3
1, 1, 2, 6, 24, 112, 560, 2888, 15136, 80160, 427968, 2300736, 12445440, 67702272, 370205184, 2033976960, 11224014336, 62186741248, 345825348608, 1929744008192, 10802203119616, 60644473282560, 341383505977344
OFFSET
0,3
COMMENTS
Hankel transform is A099202 (a trivial Somos-4 sequence linked to y^2=1-12x+44x^2-48x^3.
LINKS
FORMULA
G.f.: 1/(1-x/(1-x/(1-2x/(1-2x/(1-x/(1-x/(1-2x/(1-2x/(1-x/(1-x/(1-2x/(1-.... (continued fraction);
G.f.: 1/(1-x-x^2/(1-3x-4x^2/(1-3x-x^2/(1-3x-4x^2/(1-3x-x^2/(1-3x-4x^2/(1-... (continued fraction);
G.f.: (1-2x-sqrt((1-2x)(1-10x+24x^2)))/(4x(1-2x)).
Recurrence: (n+1)*a(n) = 4*(3*n-1)*a(n-1) - 4*(11*n-17)*a(n-2) + 24*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 2^(n-5/2)*3^(n+1)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012
a(n) = Sum_{k, 0<=k<=n} A168511(n,k)*2^(n-k). - Philippe Deléham, Mar 19 2013
MATHEMATICA
CoefficientList[Series[(1-2*x-Sqrt[(1-2*x)(1-10*x+24*x^2)])/(4x*(1-2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
CROSSREFS
Sequence in context: A177521 A152322 A308726 * A118376 A212884 A375923
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 27 2009
STATUS
approved