login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327680
Total number of colors used in all colored integer partitions of n using all colors of an initial interval of the color palette such that parts i have distinct color patterns in arbitrary order and each pattern for a part i has i colors in (weakly) increasing order.
2
0, 1, 7, 44, 358, 2904, 29112, 296448, 3520568, 43482208, 602603120, 8712724080, 138736978208, 2302036052128, 41417364992160, 776413790063328, 15597709327298944, 325945020056535968, 7238587734613470208, 166897326948551436384, 4061690336695535982048
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=1..n} k * A309973(n,k).
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, min(n-i*j, i-1), k)*
binomial(binomial(k+i-1, i), j)*j!, j=0..n/i)))
end:
a:= n-> add(add(k*b(n$2, i)*(-1)^(k-i)*
binomial(k, i), i=0..k), k=0..n):
seq(a(n), n=0..22);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i-1], k] Binomial[Binomial[k+i-1, i], j] j!, {j, 0, n/i}]]];
a[n_] := Sum[Sum[k b[n, n, i](-1)^(k-i)Binomial[k, i], {i, 0, k}], {k, 0, n}];
a /@ Range[0, 22] (* Jean-François Alcover, Dec 18 2020, after_Alois P. Heinz_ *)
CROSSREFS
Cf. A309973.
Sequence in context: A091127 A166775 A221541 * A156374 A171493 A262772
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 21 2019
STATUS
approved