login
A364623
G.f. satisfies A(x) = 1/(1-x)^3 + x*A(x)^3.
7
1, 4, 18, 112, 847, 7086, 62974, 583002, 5560323, 54249583, 538873135, 5431177821, 55402340842, 570899082760, 5933922697380, 62138800690564, 654949976467593, 6942859160218698, 73972792893687427, 791722414873487767, 8508265804914763731
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} binomial(n+5*k+2,6*k+2) * binomial(3*k,k) / (2*k+1).
PROG
(PARI) a(n) = sum(k=0, n, binomial(n+5*k+2, 6*k+2)*binomial(3*k, k)/(2*k+1));
CROSSREFS
Partial sums of A364629.
Sequence in context: A327679 A330353 A000986 * A143920 A233534 A113356
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 30 2023
STATUS
approved