login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364623
G.f. satisfies A(x) = 1/(1-x)^3 + x*A(x)^3.
7
1, 4, 18, 112, 847, 7086, 62974, 583002, 5560323, 54249583, 538873135, 5431177821, 55402340842, 570899082760, 5933922697380, 62138800690564, 654949976467593, 6942859160218698, 73972792893687427, 791722414873487767, 8508265804914763731
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} binomial(n+5*k+2,6*k+2) * binomial(3*k,k) / (2*k+1).
PROG
(PARI) a(n) = sum(k=0, n, binomial(n+5*k+2, 6*k+2)*binomial(3*k, k)/(2*k+1));
CROSSREFS
Partial sums of A364629.
Sequence in context: A327679 A330353 A000986 * A143920 A233534 A113356
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 30 2023
STATUS
approved