login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143920
E.g.f. satisfies: A(x) = 1 + x*exp(2*Integral A(x) dx).
0
1, 1, 4, 18, 112, 880, 8256, 90384, 1131264, 15927552, 249164800, 4287669760, 80490393600, 1636924403712, 35850727342080, 841260590499840, 21056773882052608, 559992309313503232, 15768699458743959552
OFFSET
0,3
COMMENTS
Compare the definition of e.g.f. A(x) to this trivial statement:
if F(x) = 1/(1-2x) then F(x) = 1 + 2*x*exp(2*Integral F(x) dx).
FORMULA
E.g.f. satisfies: A'(x) = [1 + 2*x*A(x)]*(A(x) - 1)/x where A'(x) = d/dx A(x).
E.g.f.: (1+exp(2*x)) / (1+exp(2*x)*(1-2*x)). - Vaclav Kotesovec, Jan 05 2014
a(n) ~ n! * 2^n / (1 + LambertW(exp(-1)))^(n+1). - Vaclav Kotesovec, Jan 05 2014
E.g.f.: -1/E(0), where E(k)= 4*k-1 + x/(1 - x/(4*k+1 + x/(1 - x/E(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Jan 22 2015
EXAMPLE
E.g.f. A(x) = 1 + x + 4*x^2/2! + 18*x^3/3! + 112*x^4/4! +...
CONVERGENCE AND ASYMPTOTICS.
Let r be the radius of convergence of the power series A(x), then:
a(n)/n! ~ (1/2)/r^(n+1) where
r=0.63923227138053689755467936951149007771973874430987288272658905276...
so that the power series A(x) diverges at x=r.
Note: A(-r) is evaluated as 1/(2r) since Integral A(x) dx is a
convergent alternating series at x=-r having the sum:
Sum_{n>=0} a(n)*(-r)^(n+1)/(n+1)! = log(r - 1/2)/2 - log(r);
however, as N approaches infinity, the N-th partial sum of A(x) at x=-r,
Sum_{n>=0..N} a(n)*(-r)^n/n!, oscillates between 1/(4r) and 3/(4r).
Thus the power series A(x) converges only for |x| < r.
In closed form, r = 1/2 + LambertW(exp(-1))/2. - Vaclav Kotesovec, Jan 05 2014
MATHEMATICA
CoefficientList[Series[(1+E^(2*x))/(1+E^(2*x)*(1-2*x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 05 2014 *)
max = 20; Clear[g]; g[max + 2] = 1; g[k_] := g[k] = 4*k-1 + x/(1 - x/(4*k+1 + x/(1 - x/g[k+1]))); gf = -1/g[0]; CoefficientList[Series[gf, {x, 0, max}], x] * Range[0, max]! (* Vaclav Kotesovec, Jan 22 2015, after Sergei N. Gladkovskii *)
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+x*exp(2*intformal(A)+x*O(x^n))); n!*polcoeff(A, n)}
CROSSREFS
Sequence in context: A330353 A000986 A364623 * A233534 A113356 A062805
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 05 2008
STATUS
approved