login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143921
E.g.f. A(x) satisfies: A(x) = exp(x + x*Integral A(x) dx).
1
1, 1, 3, 10, 49, 281, 1975, 15933, 147457, 1528282, 17603351, 222691261, 3072168481, 45882929925, 737717712439, 12703639993306, 233281370579713, 4550465650811445, 93966210612477271, 2047838398486924977
OFFSET
0,3
COMMENTS
Limit n->infinity (a(n)/n!)^(1/n) = 1.1453530527... - Vaclav Kotesovec, Feb 24 2014
Compare to: G(x) = exp(Integral G(x) dx) when G(x) = 1/(1-x).
LINKS
FORMULA
E.g.f. A(x) satisfies: log(A(x)) = x*A'(x)/A(x) - x^2*A(x).
EXAMPLE
E.g.f. A(x) = 1 + x + 3*x^2/2! + 10*x^3/3! + 49*x^4/4! + 281*x^5/5! +...
log(A(x)) = x + x^2 + x^3/2! + 3*x^4/3! + 10*x^5/4! + 49*x^6/5! +...
A'(x)/A(x) = 1 + 2*x + 3*x^2/2! + 12*x^3/3! + 50*x^4/4! + 294*x^5/5! +...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=exp(x+x*intformal(A))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A005921 A193281 A367754 * A082426 A359459 A054381
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 06 2008
STATUS
approved