The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143924 E.g.f. A(x) satisfies: A(x) = 1 + x*exp(Integral A(x)^4 dx). 3
 1, 1, 2, 15, 132, 1545, 22590, 392595, 7923720, 182140245, 4696277250, 134227563855, 4211901994860, 143942600513985, 5321725064741190, 211627606517556075, 9007288512919672080, 408543101848039590285 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Compare definition of e.g.f. A(x) to the trivial statement: if F(x) = 1/(1-x) then F(x) = 1 + x*exp(Integral F(x) dx). Here Integral F(x) dx does not include the constant of integration. Limit n->infinity (a(n)/n!)^(1/n) = 2.792845... - Vaclav Kotesovec, Feb 28 2014 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..184 FORMULA E.g.f. derivative: A'(x) = [1 + x*A(x)^4]*(A(x) - 1)/x. EXAMPLE E.g.f. A(x) = 1+ x + 2*x^2/2! + 12*x^3/3! + 88*x^4/4! + 860*x^5/5! +... A(x)^4 = 1 + 4*x + 20*x^2/2! + 144*x^3/3! +1384*x^4/4! +16400*x^5/5!+... Let L(x) = Integral A(x)^4 dx where A(x) = 1 + x*exp(L(x)), then L(x) = x + 4*x^2/2! + 20*x^3/3! + 144*x^4/4! + 1384*x^5/5! +... exp(L(x)) = 1 + x + 5*x^2/2! + 33*x^3/3! + 297*x^4/4! + 3385*x^5/5! +... PROG (PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+x*exp(intformal(A^4))); n!*polcoeff(A, n)} CROSSREFS Cf. A143922, A143923. Sequence in context: A242091 A132182 A140306 * A217483 A214043 A347993 Adjacent sequences:  A143921 A143922 A143923 * A143925 A143926 A143927 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 06 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 04:52 EST 2021. Contains 349562 sequences. (Running on oeis4.)