login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371585
G.f. satisfies A(x) = ( 1 + x*A(x)^(5/2) / (1 - x)^2 )^2.
3
1, 2, 15, 130, 1263, 13210, 145254, 1655566, 19385489, 231803136, 2818714210, 34749228048, 433317651224, 5455934825956, 69267925684377, 885756704750960, 11397912218979769, 147483397060856046, 1917785255491649284, 25047838828467708506, 328444729414573179950
OFFSET
0,2
LINKS
FORMULA
a(n) = 2 * Sum_{k=0..n} binomial(5*k+2,k) * binomial(n+k-1,n-k)/(5*k+2).
PROG
(PARI) a(n, r=2, s=2, t=5, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));
CROSSREFS
Sequence in context: A242091 A132182 A365151 * A140306 A374975 A143924
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 28 2024
STATUS
approved