login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371584
G.f. satisfies A(x) = ( 1 + x*A(x)^(5/2) / (1 - x*A(x))^2 )^2.
0
1, 2, 15, 138, 1435, 16074, 189238, 2308640, 28927579, 370084760, 4814147248, 63482437724, 846678807008, 11401357736202, 154800183842738, 2116833422071448, 29128279396373599, 403029526567463278, 5603854904038673961, 78260199678455985082, 1097257906416031628336
OFFSET
0,2
FORMULA
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).
PROG
(PARI) a(n, r=2, s=2, t=5, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));
CROSSREFS
Cf. A371579.
Sequence in context: A347993 A215922 A285449 * A288950 A005415 A371523
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 28 2024
STATUS
approved