login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371586
G.f. satisfies A(x) = ( 1 + x*A(x)^2 * (1 + x*A(x)^2)^2 )^2.
0
1, 2, 13, 106, 986, 9898, 104535, 1144630, 12876908, 147937396, 1728352171, 20471245898, 245254954252, 2966792716710, 36186910210761, 444559817944096, 5495828249436652, 68318636646858588, 853455362282694440, 10708603125245767280, 134897492549870974674
OFFSET
0,2
FORMULA
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).
PROG
(PARI) a(n, r=2, s=2, t=4, u=4) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));
CROSSREFS
Cf. A367282.
Sequence in context: A371583 A083062 A204261 * A371574 A127746 A199124
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 28 2024
STATUS
approved