login
A367282
G.f. satisfies A(x) = 1 + x*A(x)^2 * (1 + x*A(x)^2)^2.
2
1, 1, 4, 18, 94, 527, 3108, 18993, 119214, 763997, 4978304, 32883853, 219690066, 1481858835, 10078051830, 69030877581, 475795428158, 3297527987794, 22965847261928, 160649189379029, 1128201207643744, 7951399289858530, 56222323349767666
OFFSET
0,3
FORMULA
If g.f. satisfies A(x) = 1 + x*A(x)^t * (1 + x*A(x)^u)^s, then a(n) = Sum_{k=0..n} binomial(t*k+u*(n-k)+1,k) * binomial(s*k,n-k) / (t*k+u*(n-k)+1).
PROG
(PARI) a(n, s=2, t=2, u=2) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 12 2023
STATUS
approved