OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000
N. S. S. Gu, N. Y. Li and T. Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
FORMULA
Convolution of sequence formed from sum of adjacent terms yields the original sequence without the first term:
a(n+1) = Sum_{k=0..n} [a(k) + a(k-1)] * [a(n-k) + a(n-k-1)], where a(-1)=0.
G.f.: 1/2*(1-(1-4*x*(1+x)^2)^(1/2))/x/(1+x)^2. - Vladeta Jovovic, Oct 10 2003
a(n) = Sum_{k=0..n} C(2k,n-k)*C(k). - Paul Barry, Jul 09 2006
Conjecture: (n+1)*a(n) + (-3*n+4)*a(n-1) + 2*(-6*n+7)*a(n-2) + 2*(-6*n+11)*a(n-3) + 2*(-2*n+5)*a(n-4)=0. - R. J. Mathar, Nov 26 2012
G.f. A(x) satisfies: A(x) = 1 + x * ((1 + x) * A(x))^2. - Ilya Gutkovskiy, Jul 10 2020
EXAMPLE
a(3)=a(0)*[a(2)+a(1)]+[a(1)+a(0)]*[a(1)+a(0)]+[a(2)+a(1)]*a(0) =1*[4+1] + [1+1]*[1+1] + [4+1]*1 = 5 + 2*2 + 5 = 14.
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul D. Hanna, Jul 29 2002
EXTENSIONS
More terms from Vladeta Jovovic, Oct 10 2003
STATUS
approved