login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259808 Guttmann-Torrie simple cubic lattice series coefficients c_n^{2}(Pi/2). 5
4, 14, 56, 226, 958, 4052, 17508, 75634, 330804, 1448830, 6397288, 28293338, 125845174, 560617586, 2507890716, 11234741560, 50489990570, 227190742034, 1024878998006, 4628430595232 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The number of n-step self-avoiding walks in two connected octants on a cubic lattice where the walk starts at the origin. - Scott R. Shannon, Aug 14 2020

LINKS

Table of n, a(n) for n=1..20.

A. J. Guttmann and G. M. Torrie, Critical behavior at an edge for the SAW and Ising model, J. Phys. A 17 (1984), 3539-3552.

CROSSREFS

Sequence in context: A329777 A323787 A132837 * A149491 A073155 A346816

Adjacent sequences:  A259805 A259806 A259807 * A259809 A259810 A259811

KEYWORD

nonn,more

AUTHOR

N. J. A. Sloane, Jul 06 2015

EXTENSIONS

a(16)-a(20) from Scott R. Shannon, Aug 14 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 23:58 EST 2022. Contains 350481 sequences. (Running on oeis4.)