login
A259808
Guttmann-Torrie simple cubic lattice series coefficients c_n^{2}(Pi/2).
5
4, 14, 56, 226, 958, 4052, 17508, 75634, 330804, 1448830, 6397288, 28293338, 125845174, 560617586, 2507890716, 11234741560, 50489990570, 227190742034, 1024878998006, 4628430595232
OFFSET
1,1
COMMENTS
The number of n-step self-avoiding walks in two connected octants on a cubic lattice where the walk starts at the origin. - Scott R. Shannon, Aug 14 2020
LINKS
A. J. Guttmann and G. M. Torrie, Critical behavior at an edge for the SAW and Ising model, J. Phys. A 17 (1984), 3539-3552.
CROSSREFS
Sequence in context: A329777 A323787 A132837 * A149491 A073155 A365114
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Jul 06 2015
EXTENSIONS
a(16)-a(20) from Scott R. Shannon, Aug 14 2020
STATUS
approved