login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214372
G.f. satisfies A(x) = x + A(x)^2*(1 + A(x))^2.
11
1, 1, 4, 16, 74, 364, 1876, 9993, 54582, 304040, 1720576, 9864114, 57169168, 334404892, 1971641096, 11705119157, 69911438676, 419798442416, 2532791105844, 15346498242460, 93344296450020, 569741502841020, 3488539758461880, 21422341792366320
OFFSET
1,3
LINKS
Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
FORMULA
G.f. A(x) satisfies:
(1) A(x) = Series_Reversion( x - x^2*(1+x)^2 ).
(2) A(x) = x + Series_Reversion( (sqrt(1+4*x) - 1)/2 - x^2 )^2. - Paul D. Hanna, Oct 24 2013
(3) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n)*(1+x)^(2*n)/n!.
(4) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1)*(1+x)^(2*n)/n! ).
Recurrence: 31*(n-2)*(n-1)*n*(104*n - 293)*a(n) = 8*(n-2)*(n-1)*(1768*n^2 - 7633*n + 7425)*a(n-1) + 20*(n-2)*(2080*n^3 - 14180*n^2 + 31612*n - 22995)*a(n-2) + 8*(2*n-5)*(4*n-13)*(4*n-11)*(104*n - 189)*a(n-3). - Vaclav Kotesovec, Sep 17 2013
a(n) ~ 1/312*sqrt(78)*sqrt((26533 + 50583*sqrt(78))^(2/3) - 5837 + 13*(26533 + 50583*sqrt(78))^(1/3))/((26533 + 50583*sqrt(78))^(1/6)) * (4/93*((209773 + 4836*sqrt(78))^(2/3) + 3481 + 34*(209773 + 4836* sqrt(78))^(1/3))/(209773 + 4836*sqrt(78))^(1/3))^n / (n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Sep 17 2013
a(n+1) = Sum_{k=0..n} binomial(n+k+1,k) * binomial(2*k,n-k)/(n+k+1). - Seiichi Manyama, Aug 24 2023
EXAMPLE
G.f.: A(x) = x + x^2 + 4*x^3 + 16*x^4 + 74*x^5 + 364*x^6 + 1876*x^7 +...
Related expansions:
A(x) = x + x^2*(1+x)^2 + d/dx x^4*(1+x)^4/2! + d^2/dx^2 x^6*(1+x)^6/3! + d^3/dx^3 x^8*(1+x)^8/4! +...
log(A(x)/x) = x*(1+x)^2 + d/dx x^3*(1+x)^4/2! + d^2/dx^2 x^5*(1+x)^6/3! + d^3/dx^3 x^7*(1+x)^8/4! +...
A(x)^2 = x^2 + 2*x^3 + 9*x^4 + 40*x^5 + 196*x^6 + 1004*x^7 + 5328*x^8 +...
(1+A(x))^2 = 1 + 2*x + 3*x^2 + 10*x^3 + 41*x^4 + 188*x^5 + 924*x^6 + 4756*x^7 + 25314*x^8 +...
Series reversion shows a relation to the Catalan numbers (A000108):
Series_Reversion( sqrt(A(x) - x) ) = (sqrt(1+4*x) - 1)/2 - x^2, which begins
x - 2*x^2 + 2*x^3 - 5*x^4 + 14*x^5 - 42*x^6 + 132*x^7 - 429*x^8 +...
where
sqrt(A(x) - x) = x + 2*x^2 + 6*x^3 + 25*x^4 + 114*x^5 + 560*x^6 + 2880*x^7 +...+ A229042(n)*x^n +...
MAPLE
a:= n-> coeff(series(RootOf(A=x+A^2*(1+A)^2, A), x, n+1), x, n):
seq(a(n), n=1..30); # Alois P. Heinz, Feb 13 2017
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x - x^2*(1+x)^2, {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Sep 17 2013 *)
PROG
(PARI) {a(n)=polcoeff(serreverse(x-x^2*(1+x)^2+x*O(x^n)), n)}
for(n=1, 30, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, x^(2*m)*(1+x+x*O(x^n))^(2*m)/m!)); polcoeff(A, n)}
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, x^(2*m-1)*(1+x+x*O(x^n))^(2*m)/m!))); polcoeff(A, n)}
(PARI) {a(n)=polcoeff(x + serreverse( (sqrt(1+4*x +x*O(x^n)) - 1)/2 - x^2 )^2, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 14 2012
STATUS
approved