login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091530
a(n) = Sum_{k=1..n} H(k) k! (n-k)!, where H(k) is the k-th harmonic number.
1
1, 4, 16, 73, 388, 2396, 17024, 137544, 1248816, 12603288, 140018688, 1698063552, 22318009344, 315942698880, 4791898275840, 77510315197440, 1331759355586560, 24220225133061120, 464796175236710400, 9385769913543475200, 198936154022512435200, 4415822707430415052800
OFFSET
1,2
FORMULA
E.g.f.: (-li[2]((2-x)*x) + 2*li[2](x) - 2*log(1-x)*(x-1)) / (x-2)^2 + (log(1-x) * (4*x^2 + log(1-x)*x - 14*x - log(1-x) + 12)) / (2*(x-2)^2*(x-1)) where li[2](x) is the dilogarithm of x. - Vladimir Kruchinin, Jan 03 2024
a(n) ~ n! * (log(n) + gamma), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 03 2024
MAPLE
H:= proc(n) H(n):= `if`(n=0, 0, H(n-1)+1/n) end:
a:= n-> add(H(k)*k!*(n-k)!, k=1..n):
seq(a(n), n=1..22); # Alois P. Heinz, Jan 03 2024
MATHEMATICA
Table[ Sum[ HarmonicNumber[k]k!(n - k)!, {k, 1, n}], {n, 1, 20}] (* Robert G. Wilson v, Jan 14 2004 *)
PROG
(PARI) a(n) = sum(k=1, n, sum(i=1, k, 1/i)*k!*(n-k)!); \\ Michel Marcus, Jan 03 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Jan 08 2004
EXTENSIONS
Extended by Robert G. Wilson v, Jan 14 2004
STATUS
approved