login
A366498
G.f. A(x) satisfies A(x) = 1 + x / ((1+x)^(5/2)*A(x)^(3/2)).
6
1, 1, -4, 16, -74, 386, -2180, 12974, -80087, 507887, -3288564, 21649068, -144458484, 974838450, -6641303895, 45615642021, -315530731215, 2196107692119, -15368596890978, 108073850591598, -763293549312084, 5412015893523096, -38508964818580799
OFFSET
0,3
FORMULA
G.f.: A(x) = 1/B(-x) where B(x) is the g.f. of A366431.
a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(n+3*k/2-1,n-k) * binomial(5*k/2-1,k) / (5*k/2-1).
PROG
(PARI) a(n) = (-1)^(n-1)*sum(k=0, n, binomial(n+3*k/2-1, n-k)*binomial(5*k/2-1, k)/(5*k/2-1));
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 11 2023
STATUS
approved