login
A366496
G.f. A(x) satisfies A(x) = 1 + x*(1+x)^(5/2)*A(x)^(7/2).
6
1, 1, 6, 36, 251, 1891, 15007, 123593, 1046444, 9052330, 79660406, 710879890, 6418000050, 58515227946, 538008396198, 4982752630656, 46442071874398, 435299781856712, 4100411743983559, 38797120485576155, 368561495153257186, 3513923237883474314
OFFSET
0,3
FORMULA
G.f.: A(x) = 1/B(-x) where B(x) is the g.f. of A366435.
a(n) = Sum_{k=0..n} binomial(5*k/2,n-k) * binomial(7*k/2,k) / (5*k/2+1).
PROG
(PARI) a(n) = sum(k=0, n, binomial(5*k/2, n-k)*binomial(7*k/2, k)/(5*k/2+1));
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 11 2023
STATUS
approved