login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143923 E.g.f. A(x) satisfies: A(x) = 1 + x*exp(Integral A(x)^3 dx). 3
1, 1, 2, 12, 88, 860, 10392, 149044, 2478752, 46875492, 993291880, 23311581524, 600207989808, 16820818373476, 509711184710840, 16606143020005620, 578830045479469120, 21493718211307208420, 847057099952645864712 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compare definition of e.g.f. A(x) to the trivial statement:

if F(x) = 1/(1-x) then F(x) = 1 + x*exp(Integral F(x) dx).

Here Integral F(x) dx does not include the constant of integration.

Limit n->infinity (a(n)/n!)^(1/n) = 2.274991... - Vaclav Kotesovec, Feb 28 2014

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..176

FORMULA

E.g.f. derivative: A'(x) = [1 + x*A(x)^3]*(A(x) - 1)/x.

EXAMPLE

E.g.f. A(x) = 1 + x + 2*x^2/2! + 12*x^3/3! + 88*x^4/4! + 860*x^5/5! +...

A(x)^3 = 1 + 3*x + 12*x^2/2! + 78*x^3/3! + 696*x^4/4! + 7740*x^5/5! +...

Let L(x) = Integral A(x)^3 dx where A(x) = 1 + x*exp(L(x)), then

L(x) = x + 3*x^2/2! + 12*x^3/3! + 78*x^4/4! + 696*x^5/5! +...

exp(L(x)) = 1 + x + 4*x^2/2! + 22*x^3/3! + 172*x^4/4! + 1732*x^5/5! +...

PROG

(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+x*exp(intformal(A^3))); n!*polcoeff(A, n)}

CROSSREFS

Cf. A143922, A143924.

Sequence in context: A319324 A059435 A192621 * A079858 A224152 A174356

Adjacent sequences:  A143920 A143921 A143922 * A143924 A143925 A143926

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Sep 06 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 07:08 EDT 2021. Contains 347554 sequences. (Running on oeis4.)